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used to compute the derivative. His method still used a
uniform grid, but only computed the costly ENO approxi-This paper describes a new hybrid adaptive ENO scheme for

partial differential equation in conservative form. The scheme is mations at a small number of points. Jameson did not
hybrid because it combines finite difference approximations for examine the problem of high-order conservative schemes,
points away from the shock and ENO approximations near the but used wavelets to determine an optimal computational
shock. The method is adaptive in two ways. The first is that this

grid for a finite difference computation. These ideals weremethod changes the computational grid in order to maintain a uni-
joined together in Bauer [1] and tests show substantialform approximation. Second, the method determines where to use

the conservative ENO approximation to the derivative. The combi- reductions in computational costs and time. The method
nation of these produces a quick algorithm for the solution of conser- presented here breaks free from the confines of cell aver-
vation laws. Q 1997 Academic Press ages at a price. The method is no longer conservative.

Harabetian and Pego presented another nonconservative
hybrid shock capturing scheme [3]. This method is dis-INTRODUCTION
tinctly different in a couple of ways; it uses an adaptive
grid and determines on which points to use ENO approxi-The study of compressible flows requires a special class
mations differently. In Harabetian and Pego, it was sur-of algorithms specifically designed to solve problems with
mised that ‘‘if switching is prohibited too close to shocks’’discontinuous solutions. Algorithms in this class attempt
the method will be accurate in smooth regions and haveto be high order without causing spurious oscillations.
the correct shock speed. This hybrid adaptive ENO usesSpectral methods have been adapted by using filtering to
an adaptive finite difference scheme in smooth areas andinhibit oscillations. Van Leer used a hybrid of a high-order
uses a conservative ENO scheme around the shocks. Suffi-scheme in smooth regions and a monotone scheme near
cient care has been taken to ensure that all shocks are wellshocks [13]. Shu and Osher developed a class of high-order
within the region of ENO approximations.essentially nonoscillatory conservative schemes (ENO)

This paper will first cover the basics including the general[11, 12]. ENO schemes are highly adaptive schemes which
form of the differential equation and formulation of ENOuse an optimal stencil at each grid point. ENO schemes
schemes. Then I will discuss the computational grids whichcome in two different formulations, cell-average and point-
form the corner stone of the hybrid adaptive ENO method.wise. Cell-average schemes use a very intuitive method
This is followed by a discussion of when and where ENObased on the cell averages of the function. In Bauer an
computations are used to ensure an accurate solution. Theadaptive grid cell-averaged ENO scheme was developed
next two sections cover how and when to change the com-and analyzed [1]. However, the cell-average ENO formula-
putational grid and two ways to change the grid throughouttion on regular grids is prohibitively expensive when ap-
the computation. Finally, examples are presented showingplied in higher dimensions and is even more expensive on
that the method is able to compute and maintain a sufficientnonuniform grids.
computational grid.Point-wise ENO avoids the dimensional complications

but is only applicable on a uniform grid. Unfortunately, 2. ESSENTIALLY NON-OSCILLATORY
ENO schemes are substantially more expensive to imple- SCHEMES (ENO)
ment than finite difference methods. At every grid point,
several if–then statements must be evaluated to decide on Consider the solution of conservative PDEs written in
the proper stencil. Harten [4–9] and Jameson [10] devel- the form
oped methods to reduce computations using wavelets and
multiresolution analysis. Harten used wavelet coefficients ­

­t
u(x, t) 5

­

­x
f (u(x, t)). (2.1)

to locate points where a cheaper/faster method could be
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FIG. 1. Example of nesting of the mesh levels.

Also consider the uniform grid point-wise ENO scheme order ENO approximation of f̂j11/2 will require p if–then
statements to be executed at each grid point and at everywritten in terms of it’s numerical flux f̂j11/2 ,
time step. These if–then statements substantially slow
down the algorithm. This paper, like [1], uses an adaptive

ut(xj , t) 5
1
D

( f̂j11/2 2 f̂j21/2) (2.2a) grid ENO scheme to reduce the number of ENO approxi-
mations while maintaining accuracy.

f̂j11/2 5 F [..., u(xj21 , t), u(xj , t), u(xj11 , t), u(xj12 , t), ...],

(2.2b) 3. GRID AND MESH

The algorithm has two different sets of points. The firstwhere F is consistent and Lipschitz continuous in each of
its arguments and D 5 xj11 2 xj . Shu and Osher [11] devel- set is the computational grid and is the set of points xj [

[0, 1] where the value of the function u(x, t) is known.oped a nonoscillatory method to compute high-order ap-
proximations to f̂j11/2 . Implicitly define h(x) by Throughout assume the points are ordered xj , xj11 . And,

while computationally this is not practical, pointers are
used to keep track of data points. This set of computational

f (u(x)) 5
1
D
Ex1D/2

x2D/2
h(j) dj. (2.3) points is called the grid. There are specific requirements

on which sets of points xj will be a usable grid. To under-
stand which collections of points xj are usable examine theDifferentiating (2.3) with respect to x leads to
other set of points.

The other set of points is called the mesh, and will be­f (u(x))
­x

5
h(x 1 D/2) 2 h(x 2 D/2)

D
. (2.4) used for maintaining the grid, record keeping, and changing

the grid. The mesh consists of evenly spaced points which
can possibly be used for computations. The grid is a subsetComparing (2.2a) and (2.4) results in
of the mesh.

The mesh is defined as a hierarchy of levels. Every meshf̂j11/2 5 h(xj11/2). (2.5)
point on level 1 is the child of a mesh point on level 0 and
the parent of two children on level 2. Likewise every meshBy using the primitive of h(x) and the knowledge of f (u(xj ,
point on level 2 is the child of a mesh point on level 1 andt)), a high-order approximation of h(x) can be computed.
the parent of two children on level 3. (See Fig. 1.)However, (2.3) requires that the grid be uniform with spac-

ing D. If the grid is nonuniform, computation of h(x) is
3.1. Mesh Propertiesmore difficult and the scheme is no longer conservative.

Since the scheme is no longer conservative, an easy to The following values are recorded for each mesh point
compute finite difference approximation to the derivative in order to maintain the mesh and the grid. Figure 2 shows
is used. the values of these properties for a small grid with four

Computing a high-order approximation is not difficult, hierarchal levels.
but finding a high-order ENO approximation which is not
oscillatory is difficult and expensive. To compute a pth level( j) equals the hierarchal level on which the mesh
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FIG. 3. Demonstration of the definitions of sibling and next.

point lies. The points on level 0 are the most basic points next(left, j) points to the closest point to the left on
the same level as mesh(j).which must be used in each computation. Points are added

on higher levels, giving rise to higher accuracy. next(right, j) points to the closest point to the right on
mesh( j) refers to the jth mesh point and xj will refer the same level as mesh(j).

to a grid point.
3.2. Defining the Gridparent( j) equals the value of the mesh point which

gave life to mesh(j). If mesh(j) is on the grid, then parent(j) Now that the mesh is defined, it is much easier to describe
must be on the grid. Points on level 0 will not have parents. the computational grid. All points x0

j [ L0 are grid points.
child(left, j) & child(right, j) are the values of the two For the points xk

j [ Lk.0 to be a grid point, xk
j must satisfy

mesh points which are the children of mesh(j). If the algo- the following grid rules:
rithm determines that the grid needs to be refined around

1. If mesh( j) [ grid, then parent( j) [ grid.the point mesh(j), then the points child(left,j) and
child(right,j) are added. Points on the finest level will not 2. If mesh( j) [ grid, then sibling( j) [ grid.
have any children. Note that parent(child(left, j)) 5 j. 3. If child(left, j) [ grid, then next(left, j) [ grid.

Next define Lk as the set of points which make up level 4. If child(right, j) [ grid, then next(right, j) [ grid.
k. Let N be the number of points on the coarsest level L0 .
Then Eqs. (3.1) define the points in each of the levels Ld 3.3. Grid and Mesh Combined
and (3.1d) shows how the levels join together to form a

The mesh defines the grid. But now arises the need tomesh which is uniformly spaced.
examine the grid and determine what properties it has.
Consider a mesh with 5 levels and N 5 20. Then the meshL0 5 hx0

j u x0
j 5 j/N, for j 5 0, N 2 1j (3.1a)

will have 320 points and the grid will have between 20 and
L1 5 hx1

j u x1
j 5 1/2N 1 j/N, for j 5 0, N 2 1j (3.1b) 320 points. Assume that there are P grid points, xj for j 5

0, ..., P 2 1.
Ld 5 hxd

j u xd
j 5 1/N2d 1 j/N2d21, for j 5 0, N2d21 2 1j (3.1c)

<
d

k50

Lk 5 2dN xj 5 j/2dN. (3.1d)
TABLE I

Stencils for the Third-Order Scheme
This hierarchy of levels is very similar to wavelets. How-

Stencil No. wj21 wj wj11ever, unlike wavelets, small portions of each level instead
of the entire level.

22 wj 1 1 wj wjThere are a few additional quantities which need to be
21 wj wj wj 2 1

defined (see Figs. 2 and 3): 0 wj wj wj

11 wj 2 1 wj wjsibling( j) points to the mesh point which has the same
12 wj wj wj 1 1

parent as mesh(j).
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TABLE IIGrid Rules 1 and 2 ensure that for all j, there exists an
integer wj [ [0, 4], such that Grid Spacing for Each Stencil

Stencil No. xj21 xj xj11 xj12Dj 5 xj11 2 xj 5 2wj/320 5 2wj p d (3.2a)

d 5 1/320. (3.2b) 22 xj 2 2Dj xj xj 1 Dj xj 1 2Dj

21 xj 2 Dj xj xj 1 Dj xj 1 3Dj/2
0 xj 2 Dj xj xj 1 Dj xj 1 2DjIn other words, the distance between neighboring points

11 xj 2 Dj/2 xj xj 1 Dj xj 1 2Djwill be either 1/320, 2/320, 4/320, 8/320, or 16/320.
12 xj 2 Dj xj xj 1 Dj xj 1 3Dj

Grid Rules 3 and 4 result in another important rela-
tionship,

uwj11 2 wju # 1. (3.3) consider the four points xj21 , xj , xj11 , and xj12 related to
wj21 , wj , and wj11 . The spacing for each of these stencils

The importance of this is that xj11 2 xj will not vary too between grid points is given in Table II. Now the algorithm
quickly throughout the domain. For example, if the dis- needs only five sets of coefficients to compute the deriva-
tance from x10 to x11 is 8/320, then the distance from x11 tive. To compute fx(u(xj , t)), use the formula
to x12 can only be 4/320, 8/320, or 16/320 which are multi-
ples of 1/2, 1, or 2 times 8/320.

fx(u(xj , t)) 5
1
Dj

O2
k521

ck f (u(xj1k , t)) 1 O(D3
j ) (3.5)These two rules are the equivalent of requiring that each

grid point should be overlapped by a coarser level grid
point that is not more than one level coarser than itself. and the coefficients for the appropriate stencil found in
These requirements are similar to ones which Harten Table III. This small set of coefficients can now be stored
[4, 9] and Jameson used [10]. and used as needed.

3.4.1. Higher Order. The above stencils are derived for3.4. Stencils for Finite Difference Approximation
a third-order, four-point stencil. There are two ways to

Unlike uniform grids, finite difference approximations modify this method for higher order. Consider a fourth-
need to be computed for many different grid spacings. order, five-point stencil. The first involves allowing six
The grid rules restrict how many different stencils need to more stencils which are shown in Table IV.
be computed. This requires six more stencils than before and two sten-

In this section consider equations for which f 9(u) $ 0 cils have three different spacings within them (stencils 24
for all u(x, t). This will allow us to consider only stencils and 4). Previously there were only two different spacings
for waves moving to the left. Stencils are created using within each stencil. This difference is reflected in the
the points xj21 , xj , xj11 , & xj12 which are used in turn to equation
approximate fx(u(xj , t)).

When the requirement on f 9(u) does not hold, a flux uwj11 2 wju 1 uwj 2 wj21u 1 uwj21 2 wj22u # 2 (3.6)
splitting is used such that f (u) 5 f 1(u) 1 f 2(u) where df 1/
du $ 0 and df 2/du # 0. One possible splitting is f 1(u) 5 where the right-hand side determines the total number of
f (u) 1 au and f 2(u) 5 f (u) 2 au where a 5 maxuu f 9(u)u. changes in wj within the stencil.
There are other choices for f 1(u) and f 2(u) which are more Alternatively, additional grid rules can be defined. This
physical and the actual choice will depend on the equation will reduce the possible stencils from 11 to 7. Moreover,
to be solved. (See Shu and Osher [11, pp. 36 & 37].) each stencil permits only two different grid spacings. Con-

Once f 1(u) and f 2(u) are determined, use the following
stencils to compute f 1

x (u) and use similar stencils using the
points x22 , x21 , x0 , and x1 to compute f 2

x (u). TABLE III
Grid Rules 3 and 4 also ensure the relation

Coefficients for Third-Order Approximations

uwj11 2 wju 1 uwj 2 wj21u # 1. (3.4) Stencil No. c21 c0 c1 c2

22 21/12 21 4/3 21/4To understand the impact of this statement, consider for
21 23/10 22/3 3/2 28/15example a third-order, four-point stencil. Knowing wj and

0 21/3 21/2 1 21/6using (3.4) leads to only five possible combinations of wj21 ,
11 216/15 1/2 2/3 21/10

wj , and wj11 . These five possibilities are labeled stencils
12 23/8 21/3 3/4 21/24

22 through 12 and are shown in Table I. Furthermore,
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TABLE IV compute the derivative at xj , the points xk for k 5 ( j 2 r
2 1) · · · ( j 1 r 1 1) must be fine grid points.Stencils for the Fourth-Order Scheme

In other words, for any point xj such that xj1r11 2
Stencil No. wj22 wj21 wj wj11 xj2r21 5 (2r 1 2)d use an ENO approximation to the deriv-

ative.
25 wj 2 1 wj wj wj 2 1
24 wj 2 1 wj wj wj 1 1
23 wj 1 1 wj 1 1 wj wj 5. GRID MODIFICATIONS
22 wj 1 1 wj wj wj

21 wj wj wj wj 2 1 This section describes the algorithms which will modify
0 wj wj wj wj the computational grid. The analysis is for the specific case

11 wj wj wj wj 1 1
of a third-order scheme. A brief overview of the construc-12 wj 2 1 wj wj wj

tion of the stencils and results from this section for a fifth-13 wj 2 1 wj 2 1 wj wj

14 wj 1 1 wj wj wj 2 1 order scheme are given in Appendix A.
15 wj 1 1 wj wj wj 1 1

5.1. Accuracy

This method relies on two algorithms to change the grid.
sider the five point stencil again with these two additional The first adds grid points to ensure the scheme maintains
grid rules: accuracy. How does one ‘‘maintain accuracy?’’

Consider the 1D wave equation5. if child(left,xj) [ grid, then next(left,next(left,xj)) [
grid

ut 5 ux (5.1)6. if child(right,xj) [ grid, then next(right,
next(right,xj)) [ grid

with u(x, t) a Cy function, and the semidiscrete approxima-This enforces
tion to ut 5 ux ,

uwj11 2 wju 1 uwj 2 wj21u 1 uwj21 2 wj22u # 1 (3.7)

d
dt

u(xj , t) 5 Gj(u(x, t)), (5.2)and eliminates stencils 24, 25, 4, and 5.

4. ENO IMPLEMENTATION
where Gj(u(x, t)) is a third-order approximation to ux(x, t),

The scheme will use an ENO approximation to the deriv-
ative on the finest grid. Section 5 will discuss the grid Gj(u(x, t)) 5 c21u(xj21 , t) 1 c0u(xj , t)

(5.3)modifying algorithms which ensure that all discontinuities
1 c1u(xj11 , t) 1 c2u(xj12 , t).lie within a region of high resolution. But for now, consider

only the implementation of ENO on a uniformly fine mesh.
Define a fine grid point as a grid point satisfying The coefficients, ck , are the same ones computed in Section

3. Using a Taylor’s expansion about xj ,
Dj21 5 d 5 Dj . (4.1)

And define a region of uniform high resolution as a section Gj(u(x, t)) 5 ux(xj , t) 1
1

24
[c21(xj21 2 xj)4u(iv)(j1)

where fine grid points are grouped together. These regions
will be where an ENO approximation can be applied. 1 c1(xj11 2 xj)4u(iv)(j2) 1 c2(xj12 2 xj)4u(iv)(j3)]

4.1. ENO at a Single Point (5.4)

In order to compute fx(u(xj)), both f̂j21/2 and f̂j11/2 need
to be computed. To find a rth-order solution, it is re- for some j1 , j2 , j3 [ [xj21 , xj12]. Then the local truncation

error isquired that

f̂j11/2 5 h(xj11/2) 1 O(dr11). (4.2)
ej #

1
24

uc21(xj21 2 xj)4u(iv)(j1)

(5.5)For a (r 1 1)st-order ENO reconstruction of h(x), r 1 1
points around xj21/2 and xj11/2 are required. Therefore, to 1 c1(xj11 2 xj)4u(iv)(j2)c2(xj12 2 xj)4u(iv)(j3)u.
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TABLE V 5.2. Adding Points

Bounds B(wj21 , wj , wj11) Let Up(x; y22 , y21 , y0 , y1 , y2) be an approximation to
u(p)(x) using the points y22 , y21 , y0 , y1 , y2 . The computation

Stencil No. B(wj21 , wj , wj11) of Up must be a quick computation because it will be
used often.22 20/3

21 9/2 Define ia( j) as an estimate to u(iv) (4) using the points
0 4 xj22 , xj21 , xj , xj11 , xj12 ,

11 7/3
12 9/2

ia( j) 5 uU4(xj ; xj22 , xj21 , xj , xj11 , xj12)u. (5.11)

Then define Ia( j) as

Using
Ia( j) 5

5D3
j

18 F max
k5j2h(a), j1h(a)

hia(k)jG (5.12)
xj21 2 xj 5 2d2wj21 (5.6a)

for some h(a). If h(a) 5 2, then Ia( j) will bound the trunca-xj11 2 xj 5 d2wj (5.6b)
tion error at xj .xj12 2 xj 5 d2wj 1 d2wj11 (5.6c) In order to anticipate the movement of data, h(a) is
chosen larger than the value of 2 required to estimate ej

and defining [approx. 5]. This leads to a simple rule for adding points
to the grid. If Ia( j) . TOLa , then refine the grid by adding
the points child(left, j) and child(right, j).Uj 5 max

j[[xj21 ,xj12]
uu(iv)(j)u, (5.7)

5.3. Removing Points

the error can be bounded by The second algorithm deletes grid points so that the
method uses as few as possible. For the add algorithm
above, the grid was tested at the point xj and if required

ej #
d 4

24
[uc21u16wj21 1 uc1u16wj 1 uc2u(2wj11 1 2wj)4]Uj . (5.8)

the children of the point xj were added. For the remove
algorithm, the grid is tested at the point xj and if required
the children of xj are removed.Using the coefficients found in Section 3, a bound for each

The indicator for removal uses xj and a set of four pointsdifferent stencil can be found,
nearby the children of xj , which are the points xj21 and
xj11 . In determining whether to remove the points xj21 and
xj11 , avoid using them to compute ir( j). Defineej #

D3
j

24
B(wj21 , wj , wj11)Uj , (5.9)

i2( j) 5 uU0(xj21 ; xj23 , xj22 , xj , xj12 , xj13) 2 u(xj21 , t)u (5.13a)
where the value of B(wj21 , wj , wj11) is given in Table V.

i1( j) 5 uU0(xj11 ; xj23 , xj22 , xj , xj12 , xj13) 2 u(xj11 , t)u (5.13b)Since all of these are less than 20/3, the error can be
bounded by ir( j) 5 i2( j) 1 i1( j). (5.13c)

U0(xj21) is an approximation of u(xj21 , t) and U0(xj11) is a
ej #

5D3
j

18
Uj . (5.10) similar approximation of u(xj11 , t). Therefore ir( j) is the

total approximation error at the two points xj21 and xj11 if
they are not elements of the computational grid.

The error has two contributing factors, D3
j and Uj . The Again to anticipate u(x, t), define Ir( j) as

goal is to limit the error committed on any time step to a
certain level. Since Uj is beyond our control, use Dj to Ir( j) 5 max

k5j2h(r), j1h(r)
hir(k)j (5.14)

control the error. Then if ej . Tolerence refine the grid
and reduce the error. Tolerence is a user-defined variable
which controls how accurately the hybrid adaptive ENO for some h(r) [approx 5].

The two children of xj will not be removed if either xj21scheme should approximate the fine grid ENO scheme.
For example, if Tolerence 5 .001, then the local truncation or xj11 has children, or if the resulting grid fails to satisfy

all the Grid Rules.error for each step should be less than 0.001.
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5.3.1. ENO and the Fine Grid. Necessary to hybrid and rewrite this in the nonconservative form
adaptive ENO is ensuring that the grid changing algorithms

ut(x, t) 5 f 9(u)ux(x, t). (6.3)will always refine and never coarsen near discontinuities.
In order to ensure this, show that both ia( j) and ir( j) will

Use this equation to determine in which direction things
be large near discontinuities. If ia( j) and ir( j) are large

are moving.
near discontinuities, then both Ia( j) and Ir( j) will be large
near discontinuities and the grid will be refined and not 6.2. Biased Add Indicator
coarsened near discontinuities. The increased values of

Define a biased add indicator, Ib( j), ash(a) and h(r) will expand the fine grid regions and ensure
that the shocks will lie within the ENO regions. Ib( j 1 k) 5 max

k[Kj

(Ia( j 1 k)) (6.4a)
Harten [6, 9] showed that for a function with a disconti-

nuity in the qth derivative, the finite-difference approxima-
tion to the pth derivative behaves like O(dq2p).

Then for this approximation,
Kj 55

h0j if xj is not a fine grid point

h0 · · · h(b)j if xj is a fine grid point &
f 9(u(xj , t)) # 0

h2h(b) · · · 0j if xj is a fine grid point &
f 9(u(xj , t)) $ 0

ia( j) 5 O(dq24) ir( j) 5 O(dq25). (5.15)

Near discontinuities in the solution, ia( j) 5 O(d24) and
ir( j) 5 O(d25). Additionally, for discontinuities in the first (6.4b)
derivative ia( j) 5 O(d23) and ir( j) 5 O(d24). Therefore

for some h(b) [approx 5]. This procedure spreads the in-both Ia( j) and Ir( j) will be large and ensure that a fine grid
fluence of a high value of Ia( j) downstream if the point xjis used near shocks.
is a fine grid point. This will ensure that additional fine
grid points will be added ahead of any shock and that5.4. Systems of Equations
‘‘switching [from ENO to finite difference] is prohibited

If one is solving a system of equations, these indicators too close to shocks.’’
need to be modified only slightly. Up will now be a vector-

6.2.1. Systems of Equations. To adapt this for systems,valued approximation d(p)u/dx(p). Then (5.11) and (5.13)
recall that ENO schemes must be applied to the character-need to be replaced by a suitable norm of the vectors in
istic field. The characteristic field is also exactly what iseach equation. While the l1 or ly might seem to be logical
required to apply the biased add indicator.norms to use, the best choice is l2 because it is quick to

Let Aj11/2 become the ‘‘average’’ Jacobian of f(u) atcompute. Both l1 and ly require if–then statements.
xj11/2 . An example is Aj11/2 5 (­f /­u)uu5(uj1uj11)/2 [11, p. 43].
Let l(p)

j11/2 be the pth eigenvalue of Aj11/2 . Along with the6. SPECIAL CHANGES
eigenvectors of Aj11/2 , the eigenvectors are used in the
ENO computations on the fine grid points. These eigenval-It is not sufficient to have an algorithm which can find
ues tell which way information is traveling in each charac-the best grid for the present time step. The algorithms
teristic field.must be able to predict which grid will be required. This

Therefore redefine (6.4) asinvolves two different methods to predict the grid for the
function u(x, t 1 t). The first is easily applied to systems

Ib( j 1 k) 5 max
k[Kj

(Ia( j 1 k)) (6.5a)of equations, but the second one requires considerable
extra work and may not be efficient.

Kj 5<
p

K p
j (6.5b)

6.1. Directional Insight

Consider the equation

ut 5 a(x, t)ux (6.1) K p
j 55

h0j if xj is not a fine grid point

h0 · · · h(b)j if xj is a fine grid point & l(p)
j11/2 # 0.

h2h(b) · · · 0j if xj is a fine grid point & l(p)
j21/2 $ 0.If a(x, t) , 0, then the waves move to the right. Similarly, if

a(x, t) . 0, then the waves move to the left. Of course, the (6.5c)
waves will move different directions within the same prob-

6.3. Predictive Add Indicatorlem.Butat anyonepoint it caneasily bedeterminedinwhich
direction things are moving. Recall the original equation Again recall the simple equation

ut(x, t) 5 a(x, t)ux(x, t). (6.6)ut(x, t) 5 fx(u(x, t)) (6.2)
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TABLE VI

User Parameters

Intervals Tolerances

Version Order CFL h(a) h(r) h(b) h(t) Add Remove TOLa TOLr

1 3 .25 5 5 7 0 4 10 .00001 .001
2 3 .25 5 5 7 16 8 15 .00001 .001

Freeze a(x, t) at (x0 , t0) and consider the characteristic for some h(t) [approx. 8] and dt the step size. This will
predict the regularity of u(x, t), h(t) time steps inapproximation
the future.

The benefit of using this predictive add indicator is in-u(x0 2 a(x0 , t0)t, t0 1 t) 5 u(x0 , t0). (6.7)
creased computational speed because the add and remove
algorithms can be applied less often. This indicator alsoRevert to the nonconservative form of the equation
has a drawback. Application of this to a system of equations
will be difficult. Equation (6.9) requires the Jacobian whichut(x, t) 5 f 9(u(x, t))ux(x, t). (6.8)
is not known except at the ENO points. Instead of comput-
ing the Jacobian, simple approximations can be used toFreeze this at xj , t0 . Now it is expected that at the point

x̃j 5 xj 2 tf 9(u(xj , t0)) the value of u(x̃j , t0 1 t) is u(xj , t0). predict the regularity of u(x, t) using values of u(xj , t) at
two different time steps.This is only a rough estimate, but it provides a predictive

guess of the function at t 5 t0 1 t.

7. PARAMETERS
The previous add indicator used the values of u(x) at xj22 ,

xj21 , xj , xj11 , and xj12 . Now use predicted values by defining

The underlying mesh for the hybrid adaptive ENO com-
yk 5 xj1k 2 tf 9(u(xj1k , t0)) for k 5 22, 21, 0, 1, 2

putations has 320 points, with N 5 20, and uses four levels
of refinement and a third-order TVD (Total Variation(6.9)
Diminishing) Runge–Kutta scheme used for the time evo-
lution.and

The time step used was chosen based on the smallest
distance between grid points. Therefore once the grid wasu(yk , t0 1 t) P u(xj1k , t0) for k 5 22, 21, 0, 1, 2,
refined to the finest level possible, the time step was chosen

(6.10)
to be the same as a regular uniform 320 point ENO compu-
tation. This ensured stability for the finest grid, but was

and then redefine ia( j) using not the points xk , but the
overly small for the course grid. Berger [2] suggests a

points yk ,
method for improving over this cautious time stepping.
She suggests that intermediate time steps be taken on fine

ia( j) 5 uU4(xj ; y22 , y21 , y0 , y1 , y2)u (6.11a)
grid points. This will in effect cause every data point to
use its maximum time step.t 5 dt · h(t) (6.11b)

TABLE VII

Single Shock—Errors and Computational Times

Avg. No. of Points Error
Shock CPU

Scheme ENO Total L1 L2 Ly Width Time

Hybrid ENO 16.0 64.9 .00004160 .00004789 .0001928 .05655 144s
128 Points 128 128 .00001200 .00007930 .0007891 .1252 154s
256 Points 256 256 .000004076 .00002975 .0002824 .07196 694s
320 Points 320 320 .000002696 .00002504 .0003529 .05655 1081s
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FIG. 4. Solution of Burger’s equations with one shock present at time t 5 2. Each figure shows the hybrid adaptive ENO solution and ENO
solution using 64 & 128 points. The left figure shows the solution for the entire domain, while the right figure shows a close-up view of the solution
near the shock.

The values of h(a), h(r), and h(b) are straightforward.
if Ir , TOLr then remove the children of xjTheir assigned values are consistent with how they were

defined. The values of h(t) and the intervals between appli-
8. NUMERICAL RESULTS

cations of the add and remove algorithms are less straight-
forward. These values were determined through trial and I considered the solution to the inviscid Burger’s equation
error, but seem to work for a number of different problems,
including nonconvex problems. ­

­t
u(x, t) 5

1
2

­

­x
(u2(x, t)) (8.1)Two different sets of values for h(t) and algorithm in-

tervals were chosen (Table VI). The first versions sets
h(t) 5 0 and does not use the predictive add indicator. with two different initial conditions,
The second sets h(t) 5 16 and uses the predictive add
indicator to reduce how often the add algorithm is applied.

u(x, 0) 5
1
2

sin(x) 1
1
2

(8.2)The final two parameters are the tolerances which dictate
whether to remove or add points.

u(x, 0) 5
1
2

cos(x) 1 sin(2x 1 .2) 1
3
2

. (8.3)
if Ib . TOLa then add the children of xj

FIG. 5. Hybrid adaptive ENO and ENO errors for solution of Burger’s equations with one shock present at time t 5 2. For the hybrid adaptive
ENO scheme, the error is approximately the same for any point away from the shock.
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FIG. 6. Solution of Burger’s equations with one shock present at time t 5 8. Again shown are the hybrid adaptive ENO solution and two
different ENO solutions. The two views are the entire solution and a closeup of the solution near the discontinuity.

The first leads to a single shock in the data, while the shock width measures the smearing of the shock by the
numerical method. Shock width is defined as the distancesecond leads to two shocks traveling at different speeds

which join together into one shock. from the shock to where the computed error drops below
.001. For the hybrid adaptive ENO scheme, the solutionI compared my results to standard ENO routines using

128 points, 256 points, and 320 points. These were chosen error is less than 0.001 for all points which are more than
0.05655 away from the shock. The shock width is largerbecause 128 points takes approximately the same time to

compute, and the second two give approximately the same for both 128 point and 256 point computations. The hybrid
adaptive ENO shock width is the same as the 320-pointaccuracy as the hybrid adaptive ENO near the shock.
computation.

8.1. Single Shock Figures 4 and 5 show the solution and error of the single
shock problem at t 5 2, while Figs. 6 and 7 show theThis example is used to demonstrate accuracy in smooth
solution and error of the single shock problem at t 5 8.areas and shock speed. Table VII shows the results of
Noticeable in Figs. 5 and 7 is that the hybrid adaptive ENOthis computation. The second and third columns detail the
scheme is less accurate than the standard ENO schemesaverage number of points which used an ENO approxima-
away from the shock, but more accurate close to the shock.tion and the average number of grid points used overall.
This is not surprising since the algorithm uses more pointsThe errors measured are the pointwise error of points

which are sufficiently removed from the discontinuity. The close to the shock and fewer points away from the shock.

FIG. 7. Hybrid adaptive ENO and ENO errors for solution of Burger’s equations with one shock present at time t 5 8. For the hybrid adaptive
ENO scheme, the error is approximately the same for any point away from the shock.
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FIG. 8. Difference between a standard 320 point ENO scheme and the hybrid adaptive ENO scheme. The spatial location is represented along
the horizontal axis, while the log10 of the difference is plotted along the vertical axis. The shock location is approximately at 2.2.

FIG. 9. Data points used for hybrid adaptive ENO scheme for one shock problem. This figure shows the location of the data points used at
each time during the computation. The diamonds show the location of the shock throughout the computation.
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FIG. 10. Points where ENO approximation was used in one shock problem. The diamonds show the location of the shock throughout the compu-
tation.

the shock location, with additional ENO points ahead ofRemember, the goal is not to have the highest accuracy
the shock.everywhere, but to have approximately the same accuracy

everywhere. The errors at t 5 8 show that hybrid adaptive
8.2. Two ShocksENO provides a uniform accuracy.

Figure 8 plots the difference between the hybrid adaptive For this problem I compared two different sets of user
ENO solution and a standard ENO scheme using 320 parameters. Table VIII shows the results from using the
points. The figure shows that away from the shock, the different parameters and standard ENO schemes. The er-
hybrid adaptive ENO scheme resolves the solution within ror results are similar to the single shock example. Version
.0001 of the 320 points solution. This is to be expected 1 uses the same parameters as the single-shock problem.
since points are removed when Ir , .001. Therefore the Note version 1 takes slightly longer to compute than stan-
hybrid adaptive ENO scheme approximates the 320 points dard ENO using 128 points and is substantially quicker
ENO scheme within 0.0001 away from the shock using than using 256 points. Version 2 takes 15% less time than
only 17% the computational time. version 1, and is quicker than the ENO computation with

Figure 9 shows which grid points are used. Figure 10 128 points. Both versions have small errors and narrow
displays the points where an ENO approximation was used shock widths. The difference between versions is that ver-

sion 2 uses the predictive add indicator to change the grid.instead of finite differences. Note that they are surrounding

TABLE VIII

Two Shocks—Errors and Computational Times

Avg. No. of Points Error
Shock CPU

Scheme ENO Total L1 L2 Ly Width Time

Hybrid ENO (1) 42.2 83.8 .00007057 .00009807 .0003543 .07853 424s
Hybrid ENO (2) 42.2 84.5 .00004936 .00007454 .0003258 .07853 358s
128 Points 128 128 .00001444 .00008630 .0006660 .1767 378s
256 Points 256 256 .000005265 .00004380 .0004645 .1030 1205s
320 Points 320 320 .000006023 .00006008 .0009528 .07853 2393s
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FIG. 11. Comparison of methods on two-shock problem at t 5 4. Figures include 2 hybrid adaptive ENO solutions and 3 ENO solutions. The
left figure shows the entire solution, while the right figure shows a closeup of the solution near the discontinuities.

FIG. 12. Errors for hybrid adaptive ENO and ENO computations on the two-shock problem. The left figures show the entire error, while the
left figure shows the error near the discontinuities.

FIG. 13. Computed hybrid adaptive ENO and ENO solutions for the two-shock problem at t 5 5.
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FIG. 14. Errors for hybrid adaptive ENO and ENO schemes in the two-shock problem at t 5 5.

Figures 11–14 compare the solutions using both versions methodusesanadaptivegridtomaintainaccuracyawayfrom
of the hybrid adaptive ENO scheme along with two stan- discontinuities while minimizing the smearing of shocks.
dard ENO computations. Versions 1 and 2 are hybrid adap- One possible change would be a combination of Harabe-
tive ENO computations that are virtually indistinguishable tian and Pego’s work [3] with this work. This would involve
from each other. As before, the hybrid adaptive ENO using a switching method to switch from ENO to finite differ-
schemes are less accurate away from the shock, but more ence for points on the finest grid and would slightly reduce
accurate near the shock. the number of points where ENO computations are made.

Figures 15 and 16 again show which data points are The obvious question is how this can be applied to higher
used and which points used an ENO approximation to the dimensions. The first consideration is computation of the
derivative rather than a finite-difference approximation. derivatives required. Since conservative equations have no

cross terms, they therefore can be written as
9. CONCLUSION

ut(x, y, t) 1 Fx(u(x, y, t)) 1 Gy(u(x, y, t)) 5 0. (9.1)
The hybrid adaptive ENO scheme is an essentially nonos-

cillatory high-order scheme for conservative problems. The Computation of Fx and Gy use the same technique for

FIG. 15. Location of data points used for the hybrid adaptive ENO scheme for the two-shock problem.
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FIG. 16. Location of ENO computations for the hybrid adaptive ENO scheme for the two-shock problem.

computation of derivatives in each direction separately. In that one solution is to stagger each of the grid lines slightly.
This will somewhat increase the number of data points,doing so, each line would be treated as a separate problem

and where to use ENO and where to use finite difference but will avoid sparse grids.
The final consideration is how to change the computa-would be decided by the data points.

The second consideration is the general makeup of the tional grid. Before this problem is totally attacked, the
above problem with the higher dimension adaptive compu-computational grid. The easiest way is to test along each

vertical and horizontal line in the data whether more or tational grid needs to be resolved.
fewer data points are required. Computational tests by
myself and others using this simple method lead to grids APPENDIX A: FIFTH-ORDER EXAMPLE
similar to sparse grids. For example, three neighboring
parallel slices of the data can have drastically different For the fifth-order approximation, use stencils with the

points xj22 , xj21 , xj , xj11 , xj12 , and xj13 . Recall that thenumber of points on each slice. One line might have 128
points while its neighbors might only have 16. This is not number of changes in wj within one stencil was restricted

to one. Therefore there are only nine possible stencilsbecause of peculiarities in the data, it is just that the grid
when refined completely defaults to a sparse grid. for the fifth-order method. These can be found in

Table IX.In researching how to avoid these problems, I have found

TABLE XTABLE IX

Coefficients and Bounds for Fifth-Order StencilsStencils for Fifth-Order Approximations

Stencil No. c22 c21 c0 c1 c2 c3 B(...)Stencil No. w22 w21 w0 w1 w2

24 1/140 21/10 213/12 8/5 21/2 8/105 624/524 1 1 0 0 0
23 1/120 23/8 21/2 9/8 23/10 1/24 1143/2023 1 0 0 0 0
22 1/28 22/5 22/3 2 2128/105 1/4 242/722 0 0 0 21 21
21 5/108 210/21 22/5 10/9 25/12 128/945 450/721 0 0 0 0 21

0 1/20 21/2 21/3 1 21/4 1/30 450 0 0 0 0 0
11 64/315 23/4 21/6 9/10 23/14 1/36 531/1411 21 0 0 0 0
12 1/4 264/35 7/6 1/2 21/10 1/84 111/712 21 21 0 0 0
13 1/18 28/15 21/4 8/9 21/6 1/180 192/513 0 0 0 0 11
14 1/14 25/8 21/30 5/8 21/24 1/280 9214 0 0 0 11 11
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